
29

C h a p t e r 2

Security of Browser

In recent years, with the development of the Internet, it can be said that the browser
is the biggest entrance to the Internet; the vast majority of users access the Internet

using the browser. This has resulted in a tremendous rise in the browser market.
In this highly competitive environment, more and more people have taken security

of the browser seriously. On one hand, the browser is inherently a client; it will be quite
safe if equipped with safety features like security software. On the other hand, security of
browser has become a competing factor for browser vendors, who hope to establish techni-
cal barriers for security to gain a competitive advantage.

Therefore, in recent years with constantly updated browser versions, browser secu-
rity features are becoming more powerful. In this chapter, we will introduce some major
browsers’ security features.

2.1  Same-Origin Policy
The same-origin policy is a core convention of browsers; it is also the most basic security
function. If the same-origin policy is not available, the browser’s normal function may be
affected. The web is built on the basis of the same-origin policy, but a browser is just an
implementation strategy for the same-origin policy.

For client-side web security, in-depth understanding of the same-origin policy is very
important to handle unforeseen problems. Mostly, the same-origin policy implementation
is recessive and transparent. Many of the issues from the same-origin policy are not easy
to present the problem; if you are not familiar with the same-origin policy, you may always
not understand the problem and the reason.

Browsers’ same-origin policy limits document from different sources or scripts, and
does allow reading or setting certain properties for the current document.

This strategy is extremely important. Imagine this: If there is no same-origin policy, the
section of JavaScript at a.com, when b.com is not loading this script, can alter the b.com
page (in the browser’s display). In order to avoid such chaotic behavior of the browser page,
the browser presents the concept of origin (source) so that objects from different origins
cannot interfere with one another.

K20571_C002.indd 29 1/2/2015 8:14:21 PM

30    ◾    Web Security: A WhiteHat Perspective﻿

JavaScript examples with the same-origin policy are listed in Table 2.1.
Table 2.1 shows that the factors that have an effect on the source are host (domain name

or IP address, if the IP address is seen as a root domain), subdomain, port, and protocol.
It should be noticed that, for the current page, the domain that stores the page JavaScript

file is not important; the domain loading the JavaScript page matters much.
In other words, using the following code, a.com loaded b.js on b.com:

<script src = http://b.com/b.js ></script>

but b.js is running at a.com, so for the current page (a.com page), the origin of b.js
should be a.com rather than b.com.

In the browser, <script>, , <iframe>, <link>, and many other labels can
be loaded through cross-domain resources without restrictions from the same-origin
policy. When every time attributes with an “src” label are loaded, the browser actually
initiates a GET request. Unlike XMLHttpRequest, for the resource loaded via the src attri-
bute resource, the browser limits the authority of JavaScript so that it cannot read or write
returns.

For XMLHttpRequest, it can get access to the contents of the object from the same
origin. For example:

<html>
<head>
<script type="text/javascript">
var xmlhttp;
function loadXMLDoc(url)
{
xmlhttp=null;
if (window.XMLHttpRequest)
 {// code for Firefox, Opera, IE7, etc.
 xmlhttp=new XMLHttpRequest();
 }
else if (window.ActiveXObject)
 {// code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
 }

Table 2.1  The Examples Show Up Same-Origins or Different Origins.

URL Outcome Reason

http://store.company.com/dir2/other.html Success
http://store.company.com/dir/inner.another.html Success
http://store.company.com/secure.html Failure Different protocol
http://store.company.com:81/dir./etc/html Failure Different port
http://store.company.com/dir/other.html Failure Different host

K20571_C002.indd 30 1/2/2015 8:14:21 PM

Security of Browser    ◾    31  

if (xmlhttp!=null)
 {
 xmlhttp.onreadystatechange=state_Change;
 xmlhttp.open("GET",url,true);
 xmlhttp.send(null);
 }
else
 {
 alert("Your browser does not support XMLHTTP.");
 }
}
function state_Change()
{
if (xmlhttp.readyState==4)
 {// 4 = "loaded"
 if (xmlhttp.status==200)
 {// 200 = "OK"

document.getElementById('T1').innerHTML=xmlhttp.
responseText;

 }
 else
 {
 alert("Problem retrieving data:" + xmlhttp.statusText);
 }
 }
}
</script>
</head>
<body onload="loadXMLDoc('/example/xdom/test_xmlhttp.txt')">
<div id="T1" style="border:1px solid black;height:40;width:300;padd
ing:5"></div>

<button onclick="loadXMLDoc('/example/xdom/test_xmlhttp2.
txt')">Click</button>

</body>
</html>

But XMLHttpRequest is limited by the same-origin policy and cannot get access to a
cross-domain resource, especially in AJAX application development.

However, the Internet is open; as your business grows, demand for cross-domain requests
increases. For this purpose, the W3C Committee developed a standard XMLHttpRequest
cross-domain access. It will decide whether to allow cross-domain access through HTTP
headers returned by the target domain, because for JavaScript, the HTTP header generally
cannot be controlled. It is worth noting that the security foundation of this cross-domain
access is based on the trust that “JavaScript cannot control the HTTP header”; if this does
not hold, the program will no longer be safe (Figure 2.1).

K20571_C002.indd 31 1/2/2015 8:14:21 PM

32    ◾    Web Security: A WhiteHat Perspective﻿

For more information about the implementation process, please refer to Chapter 6.
A browser’s document object model (DOM), Cookie, and XMLHttpRequest will be sub-

ject to restrictions by the same-origin policy, but third-party browser plug-ins may also
have their own same-origin policies. Some of the most common plug-ins such as Flash, Java
Applet, Silverlight, and Google Gears also have their own control strategy.

Take Flash, for example; it determines whether to allow the current source of Flash cross-
domain access to target resources mainly through the crossdomain.xml file provided by
the target site.

Take www.qq.com policy file, for example when the browser loads the Flash page in any
other domain and access to www.qq.com is issued, Flash will first check if this policy file
exists on www.qq.com. If yes, Flash will check whether the requesting domain is in the
permitted range (Figure 2.2).

In this strategy document, only the requests from the domains “*. qq.com” and
“*. gtimg.com” are allowed. In this way, the security in Flash can be managed at the
origin

In Flash 9 and later versions, a multipurpose Internet mail extensions (MIME) check is
used to make sure crossdomain.xml is legitimate, such as checking whether the content
type which the server returns to the HTTP header is text/*, application/xml, or applica-
tion/xhtml + xml. The reason why this should be done is that the attacker can control the
behavior of Flash from uploading the crossdomain.xml file, bypassing the same-origin
policy. Besides MIME checks, Flash also checks whether the crossdomain.xml is in the
root directory, which can also lead to failure of some file inclusion attacks.

However, a browser with a same-origin policy is not always invincible, due to the real-
ization of some of the problems. Some browsers with the same-origin policy have also been
bypassed often, such as the cross-domain vulnerability in IE8 shown in Figure 2.2.

test.html test.php

www.a.com www.b.com

Origin

Access–Control–Allow–Origin

Figure 2.1  Cross-domain access request process.

Figure 2.2  The crossdomain.xml file of www.qq.com.

K20571_C002.indd 32 1/2/2015 8:14:21 PM

Security of Browser    ◾    33  

www.a.com/test.html:

<body>
{}body{font-family:
aaaaaaaaaaaaaa
bbbbbbbbbbbbbbbb
</body>

www.b.com/test2.html:

<style>
@import url("http://www.a.com/test.html");
</style>
<script>
 setTimeout(function(){
 var t = document.body.currentStyle.fontFamily;
 alert(t);
 },2000);
</script>

In www.b.com/test2.html, CSS files such as http://www.a.com/test.html are loaded,
rendering the current page into the DOM, and at the same time getting access to this con-
tent through document.body.currentStyle.fontFamily. If the problem occurs in IE’s CSS
parse process, IE will take the content behind fontFamily as a value and can read the con-
tent of www.a.com/test.html (Figure 2.3).

Figure 2.3  www.b.com can read the page content at www.a.com.

K20571_C002.indd 33 1/2/2015 8:14:21 PM

34    ◾    Web Security: A WhiteHat Perspective﻿

As mentioned before, tags like <script> can only load resources, not read or write the
contents of the resource; however, this vulnerability could read the page content across domains.
Therefore, it can bypass the same-origin policy and become a cross-domain vulnerability.

The same-origin policy is the basic security strategy of a browser. Many client-side scripting
attacks must take this into account, which will be discussed in the following chapters. Once
vulnerabilities in the same-origin policy occur and the policy is bypassed, it will bring serious
consequences—all security solutions based on that same-origin policy will be compromised.

2.2  SANDBOX BROWSER
Client side attacks have increased a great deal in recent years (Figure 2.4).

Inserting some malicious code through browser vulnerabilities to execute arbitrary
code attack is called website embedded Trojan.

Website embedded Trojan is a major threat that browsers face nowadays. Apart from
antivirus software, browser vendors developed a number of techniques to counter website
embedded Trojan.

For example, in Windows systems, browsers can defend memory attacks by closely combin-
ing the protection measures provided by the operating systems like data execution prevention
(DEP), address space layout randomization (ASLR)., SafeSEH, etc. At the same time, browsers
have also developed a multiprocess architecture, which greatly improved the security level.

Multiprocess architecture of a browser will separate each module and each browser
instance; in this way, when a process crashes, it will not affect other processes.

Google Chrome is the first browser to adopt a multiprocess architecture. The main pro-
cess of Google Chrome is divided into four: the browser process, the rendering process, the
plug-in process, and the expansion process. Plug-in processes such as Flash, Java, PDF, etc.,
are distinctively isolated from the browser process and will not affect each other (Figure 2.5).

The rendering engine is isolated from the Sandbox. The web page code needs to com-
municate with the browser kernel process and the operating system only through the IPC
channel, which will go through a number of security checks.

Sandbox, with the development of computer technology, is now generally referred to as
resource isolation class module. Sandbox is designed to allow untrusted code to run in a
certain environment, restricting it to access resources outside the quarantine area. If you

2010 -20131 6

2500

2000

1500

1000

500

0
2010 1 1 1 12010 2011

2044

117
339

0.29

2011 2012 2012 20137 7 7

Figure 2.4  Websites attacked by website embedded Trojan on 2010.1~2013.6.

K20571_C002.indd 34 1/2/2015 8:14:22 PM

Security of Browser    ◾    35  

must cross the border of Sandbox to generate data exchange, then data can only go through
designated channels, for example, through encapsulated API in which the legality of the
request will be strictly checked.

Sandbox is used in a wide range of applications. Take a shared hosting environment provid-
ing hosting services as an example: In order to prevent the user code from damaging the system
environment or prevent the code from different users from affecting each other, a Sandbox
should be used for isolating user codes in PHP, Python, Java, and the like. Sandbox needs to
consider possible requests from user code in terms of the local file system, memory, databases,
and networks. To achieve this, you can use the default deny policy or encapsulate the API.

With the use of the Sandbox technology, untrusted web page code and JavaScript code
can run in a restricted environment to ensure the security of the local system.

A relatively complete Sandbox from Google Chrome is shown in Figure 2.6.

IPC channel

Browser kernel
(trusted)

O S/runtime exploit barriers

O S-level sandbox
O S/runtime exploit barriers

Javascript sandbox

Web content
(untrusted)

Figure 2.5  Google Chrome architecture.

Interception
manager

Policy engine PolicyIPC service

IPC client
Target

Broker

IP
C

Target

Policy engine
client

Interceptions

IPC client

Policy engine
client

Sa
nd

bo
x

Sa
nd

bo
x

Interceptions

Figure 2.6  Google Chrome’s Sandbox architecture.

K20571_C002.indd 35 1/2/2015 8:14:22 PM

36    ◾    Web Security: A WhiteHat Perspective﻿

IE8 is a multiprocess architecture, in which each tab page is a separate process. IE8
architecture is shown in Figure 2.7.

Though the browsers today have multiple process architectures and Sandbox to ensure secu-
rity, third-party plug-ins loaded by the browser can often bypass the Sandbox. For example,
the browsers in the Pwn2Own conference were attacked due to loading of third-party plug-ins.
Attacks using Flash, Java, PDF, and .Net Framework have become the trend in recent years.

Perhaps future browser security models will pay more attention to these third-party
plug-ins. Browser vendors should work together to improve the standard of security
strengthen their browsers.

2.3  Malicious URL Intercept
As mentioned in Section 2.2, website embedded Trojan attacks can destroy browser
security; in many cases, when a website embedded Trojan attack is implemented, it will
load a malicious website via <script>, <iframe>, etc., in a normal web page. Besides
website embedded Trojan, there are various phishing and scam sites that could be dan-
gerous to users. In order to safeguard users from such websites, browser manufacturers
have launched applications to stop execution of malicious URLs, but again most of these
security measures depend on the blacklist.

BrowseUI.dll
(user interface)

iexplore.exe
(tab process M: tabs 1 to n)

iexplore.exe
(UI process: UI frame, toolbars, menus)

ShDocVw.dll
(navigation and history)

MSHTML.dll
(trident rendering engine)

HTML and CSS parsing
DOM tree generation

DOM tree manipulation
On-screen rendering

Hosting content handlers

URLMon.dll
(security and download)

Winlnet.dll
(HTTP and local cache)

Winlnet.dll
(HTTP and local cache)

Ac
tiv

e s
cr

ip
tin

g
en

gi
ne

s
(JS

cr
ip

t,
VB

Sc
rip

t)

Lo
ca

l d
at

a s
to

re
(u

se
r d

at
a,

 D
O

M
: s

to
ra

ge
)

M
SX

M
L

XM
L

da
ta

 Is
la

nd

D
oc

O
bj

ec
ts

ac
tiv

e c
on

tr
ol

s

Tab process NTab process 1

Figure 2.7  Architecture of IE8.

K20571_C002.indd 36 1/2/2015 8:14:22 PM

Security of Browser    ◾    37  

Stopping malicious websites from opening can be simple. Usually, the browser
periodically obtains an updated blacklist of malicious URLs from the server; if the
users try to access a URL on this blacklist, the browser will return a warning page
(Figure 2.8).

Malicious URLs can be divided into two categories: One category is sites embedded
with Trojan—such sites often run malicious scripts, such as JavaScript or Flash, (including
plug-ins and vulnerability from controls) containing shell code to implant a Trojan in the
user’s computer; the other is phishing sites—these sites imitate well-known, legitimate
websites to trick users.

To identify these two kinds of sites, we need to establish many page characteris-
tics based models, but these models are obviously not suitable to put on the client side,
because it will enable the attackers to analyze, research, and bypass the rules. In addi-
tion, as browsers always have a huge user base, collecting users' visiting history also is an
infringement of privacy, and the data quantity is too huge.

Because of these two reasons, browser vendors now mainly push the blacklist of mali-
cious urls, which the browser blocks. It's rear to retrieve data from browser or build models
at the user's side. Nowadays browser vendors work more with professional security vendors
and use blacklist from these vendors or organizations.

Major browser vendors, such as Google and Microsoft, with strong R&D have lots of
user data; they have their own security teams to conduct malicious website identifica-
tion to obtain a blacklist. Blacklists are one of the core competencies for search engines
as well.

PhishTank is an organization that provides free malicious URL blacklist, which receives
contributions and updates from volunteers around the world (Figure 2.9).

Similarly, Google has also publicized its internal SafeBrowsing API, and any organiza-
tion or individual can obtain the malicious URL blacklist. Apart from blocking websites
on the blacklist, major browsers are beginning to support the EV SSL Certificate (extended
validation SSL certificate) to enhance the identification of safe websites.

EVSSL certificate is the global‘s digital certificate issued by institutions with browser
vendors and together create the enhanced certificate, its main feature is the browser will

Figure 2.8  Warning from Google Chrome malicious URL.

K20571_C002.indd 37 1/2/2015 8:14:23 PM

38    ◾    Web Security: A WhiteHat Perspective﻿

give special treatment to the EVSSL certificate. EVSSL also follows the standard of X509
certificate and forward compatible with ordinary certificate. If the browser does not
support EV mode, then we can make the EV certificate as a ordinary certificate; If the
browser supports (need a new version of the browser) EV mode, it will be noted it in the
address bar.

Therefore, if a website uses the EV SSL certificate, the address bar will turn green indi-
cating that it is a legitimate site. This will help users in identifying and blocking phishing
sites (Figure 2.13).

Figure 2.9  PhishTank list of malicious URLs.

Get the green address bar.

Security status bar toggles between
your organization name...

Figure 2.10  Effect of EV certificates on IE.

K20571_C002.indd 38 1/2/2015 8:14:23 PM

Security of Browser    ◾    39  

Although many users are not aware of this feature of browsers, the EV SSL certificate is
widely used by websites. In the future, the popularity of EV SSL certificate authentication
is expected to increase.

2.4  Rapid Development of Browser Security
The scope of security of browsers is very wide, and today, the browser is still constantly
updated with introduction of new security features.

In order to gain a competitive edge in the security field, Microsoft first introduced XSS
Filter in IE8 to defend reflective XSS (cross-site scripting) attacks. XSS attacks are always

Figure 2.11  EV certificates in Firefox.

Figure 2.12  Ordinary certificate effects in IE.

Figure 2.13  Site with EV certificates in IE.

K20571_C002.indd 39 1/2/2015 8:14:23 PM

40    ◾    Web Security: A WhiteHat Perspective﻿

considered to happen due to application vulnerabilities at the server side, which should be
patched in the code, and Microsoft first introduced this feature, making IE8 very unique
in the security field.

When a user gets access to the URL containing an XSS attack script, IE will modify one
of the key characters to prevent the attack from executing and will pop up a dialog box
(Figure 2.14).

Some securities researchers decompiled IE8 executable files through reverse engineer-
ing and obtained the following rules:

{(v|(&[#()\[\].]x?0*((86)|(56)|(118)|(76));?))([\t]|(&[#()\[\].]
x?0*(9|(13)|(10)|A|D);?))*(b|(&[#()\[\].]
x?0*((66)|(42)|(98)|(62));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(s|(&[#()\[\].]x?0*((83)|(53)|(115)|(73));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(c|(&[#()\[\].]
x?0*((67)|(43)|(99)|(63));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*{(r|(&[#()\[\].]x?0*((82)|(52)|(114)|(72));?))}
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(i|(&[#()\[\].]
x?0*((73)|(49)|(105)|(69));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(p|(&[#()\[\].]x?0*((80)|(50)|(112)|(70));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(t|(&[#()\[\].]
x?0*((84)|(54)|(116)|(74));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(:|(&[#()\[\].]x?0*((58)|(3A));?)).}

{(j|(&[#()\[\].]x?0*((74)|(4A)|(106)|(6A));?))([\t]|(&[#()\[\].]
x?0*(9|(13)|(10)|A|D);?))*(a|(&[#()\[\].]
x?0*((65)|(41)|(97)|(61));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(v|(&[#()\[\].]x?0*((86)|(56)|(118)|(76));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(a|(&[#()\[\].]
x?0*((65)|(41)|(97)|(61));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*(s|(&[#()\[\].]x?0*((83)|(53)|(115)|(73));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(c|(&[#()\[\].]
x?0*((67)|(43)|(99)|(63));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|
A|D);?))*{(r|(&[#()\[\].]x?0*((82)|(52)|(114)|(72));?))}

Figure 2.14  IE8 intercepted XSS attacks.

K20571_C002.indd 40 1/2/2015 8:14:24 PM

Security of Browser    ◾    41  

([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(i|(&[#()\[\].]
x?0*((73)|(49)|(105)|(69));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)
|A|D);?))*(p|(&[#()\[\].]x?0*((80)|(50)|(112)|(70));?))
([\t]|(&[#()\[\].]x?0*(9|(13)|(10)|A|D);?))*(t|(&[#()\[\].]
x?0*((84)|(54)|(116)|(74));?))([\t]|(&[#()\[\].]x?0*(9|(13)|(10)
|A|D);?))*(:|(&[#()\[\].]x?0*((58)|(3A));?)).}

{<st{y}le.*?>.*?((@[i\\])|(([:=]|(&[#()\[\].]x?0*((58)|(3A)|(61)|
(3D));?)).*?([(\\]|(&[#()\[\].]x?0*((40)|(28)|(92)|(5C));?))))}

{[/+\t\"\'`]st{y}le[/+\t]*?=.*?([:=]|(&[#()\[\].]x?0*((58)|(3A)|
(61)|(3D));?)).*?([(\\]|(&[#()\[\].]
x?0*((40)|(28)|(92)|(5C));?))}

{<OB{J}ECT[/+\t].*?((type)|(codetype)|(classid)|(code)|(data))
[/+\t]*=}

{<AP{P}LET[/+\t].*?code[/+\t]*=}
{[/+\t\"\'`]data{s}rc[+\t]*?=.}
{<BA{S}E[/+\t].*?href[/+\t]*=}
{<LI{N}K[/+\t].*?href[/+\t]*=}
{<ME{T}A[/+\t].*?http-equiv[/+\t]*=}
{<\?im{p}ort[/+\t].*?implementation[/+\t]*=}
{<EM{B}ED[/+\t].*?SRC.*?=}
{[/+\t\"\'`]{o}n\c\c\c+?[+\t]*?=.}
{<.*[:]vmlf{r}ame.*?[/+\t]*?src[/+\t]*=}
{<[i]?f{r}ame.*?[/+\t]*?src[/+\t]*=}
{<is{i}ndex[/+\t>]}
{<fo{r}m.*?>}
{<sc{r}ipt.*?[/+\t]*?src[/+\t]*=}
{<sc{r}ipt.*?>}
{[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).*?(((l|(\\u006C))(o|(\\
u006F))({c}|(\\u00{6}3))(a|(\\u0061))(t|(\\u0074))(i|(\\u0069))
(o|(\\u006F))(n|(\\u006E)))|((n|(\\u006E))(a|(\\u0061))
({m}|(\\u00{6}D))(e|(\\u0065)))).*?=}

{[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).+?{[\[]}.*?{[\]]}.*?=}
{[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).+?{[.]}.+?=}
{[\"\'].*?{\)}[]*(([^a-z0-9~_:\'\"])|(in)).+?{\(}}
{[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).+?{\().*?{\}}}

These rules can capture the URL of XSS attacks, and other security products can learn
from them.

Firefox also acted fast and launched a Content Security Policy (CSP), first proposed
by security expert Robert Hanson. Its approach is to return an HTTP header from the
server, in which security policies the page should comply with are described.

K20571_C002.indd 41 1/2/2015 8:14:24 PM

42    ◾    Web Security: A WhiteHat Perspective﻿

Because XSS attacks are unable to control the HTTP header in the absence of third-
party plug-ins, this measure is feasible.

This custom syntax must be supported and implemented by browsers, and Firefox was
the first browser to support this standard.
Using CSP by inserting an HTTP return header is as follows:

X-Content-Security-Policy: policy

The description of the policy is extremely flexible, such as

X-Content-Security-Policy: allow 'self' *.mydomain.com

Browsers will trust the contents from mydomain.com and its subdomain.
Another example:

X-Content-Security-Policy: allow 'self'; img-src *; media-src
media1.com; script-src userscripts.example.com

Besides trusting their own sources, the browser will also load images from any domain,
media files from media1.com, scripts from userscripts.example.com, and reject anything
from other sources.

The concept of CSP design is undoubtedly good, but the rule configuration of CSP is
complex. In the case of more pages, it becomes difficult to configure each page; mainte-
nance cost also increases and promoting CSP becomes difficult.

Apart from these new security features, user experience for browsers is improving
because of many user-friendly functions. But many programmers lack knowledge about
these new features, which may cause some security risks.

For example, the address bar of the browser will respond differently toward the irregu-
larity of a URL. The following URL will be properly parsed in IE:

www.google.com\abc

which will become

www.google.com/abc

The same thing happens in Chrome. “\” is changed to the standard “/”.
But Firefox does not work this way: www.google.com\abc would be considered as an

illegal address and will not be opened.
The same user-friendly functions can also be found in Firefox, IE, and Chrome. The

following URL is very common:

www.google.com?abc

K20571_C002.indd 42 1/2/2015 8:14:24 PM

Security of Browser    ◾    43  

This becomes

www.google.com/?abc

Firefox can even recognize the following URLs:

[http://www.cnn.com]
[http://]www.cnn.com
[http://www].cnn.com
……

However, if exploited by hackers to bypass the security software or security modules, these
features will not be user-friendly any more.

Browser plug-ins also need to be considered as a threat to browser security. In recent
years, abundant extensions and plug-ins have been the focus of reinforcing browser security.

Extensions and plug-ins greatly enriched the functionality of the browser, but security
issues have also cropped up. Besides the loopholes plug-ins may have, a plug-in itself may
be malicious. Extensions and plug-ins have higher privileges than the JavaScript page; for
example, they can conduct some cross-domain network requests.

Sometimes, plug-ins might also contain malicious programs, such as the plug-ins
named Trojan.PWS.ChromeInject.A, which is used to hack online banking passwords.
It has two files:

"%ProgramFiles%\Mozilla Firefox\plugins\npbasic.dll"
"%ProgramFiles%\Mozilla Firefox\chrome\chrome\content\browser.js"

It will monitor all websites browsed in Firefox; when it identifies an online banking web-
site, it will record the passwords used and then send them to a remote server. With new
features come new challenges.

2.5  Summary
The browser is an important entrance to the Internet, which has been increasingly valued
by both offence and defense security personnel. In the past, when speaking of offence and
defense, we paid more attention to server-side vulnerabilities, but right now, the scope of
security research has covered all the aspects of the Internet, with the browser being the
most important.

The security of browsers is based on the same-origin policy, so understanding the same-
origin policy will help grasp the essence of browser security. In the current, rapidly devel-
oping trend of browsers, malicious URL detection, plug-ins, and other security issues will
become increasingly important. Keeping up with the pace of browser development to study
the security of browsers is what researchers need to take seriously.

K20571_C002.indd 43 1/2/2015 8:14:24 PM

K20571_C002.indd 44 1/2/2015 8:14:24 PM

