dcsimg

Flawed Integration Can Destroy Data Quality and Reliability

  • Flawed Integration Can Destroy Data Quality and Reliability-

    Relevance, Accuracy, and Completeness

    The challenge in dealing with this extraordinary deluge of information is having the ability to quickly and easily access it, on any device, from any location, at any time. By fully optimizing your data connectivity, you can generate a positive domino effect that improves the performance of your organization across the board. Apps can be snappier with decreased load times, improving user experience. Data can be accessed and analyzed faster, meaning you can act quickly on the latest insights for better decision making. Anytime/anywhere connectivity gives you the ability and the agility to adjust on the fly to meet continually changing customer needs and fluctuating marketplace demands.

1 | 2 | 3 | 4 | 5 | 6 | 7

Flawed Integration Can Destroy Data Quality and Reliability

  • 1 | 2 | 3 | 4 | 5 | 6 | 7
  • Flawed Integration Can Destroy Data Quality and Reliability-3

    Relevance, Accuracy, and Completeness

    The challenge in dealing with this extraordinary deluge of information is having the ability to quickly and easily access it, on any device, from any location, at any time. By fully optimizing your data connectivity, you can generate a positive domino effect that improves the performance of your organization across the board. Apps can be snappier with decreased load times, improving user experience. Data can be accessed and analyzed faster, meaning you can act quickly on the latest insights for better decision making. Anytime/anywhere connectivity gives you the ability and the agility to adjust on the fly to meet continually changing customer needs and fluctuating marketplace demands.

Analyzing large amounts of data across a multitude of business systems enables companies to optimize the performance of the sales team, identify patterns in the industry, or determine the efficacy of marketing. A variety of tools enable organizations to prepare the data, but if the quality is insufficient, it will provide unreliable insights.

Data connectivity and integration can be affected by a variety of factors including how it is entered, stored and managed. Maintaining high-quality data is reliant on regular updating, standardization and de-duplication. However, if these processes are flawed, the data can negatively sway organizational spend and productivity. When evaluating the quality of your organization’s data, a variety of characteristics need to be assessed.

In this slideshow, Paul Nashawaty, director of product marketing and strategy at Progress, looks at key factors organizations must consider to ensure their data remains of high quality.